Solution structure of the Z-DNA binding domain of PKR-like protein kinase (PKZ) from Carassius auratus and quantitative analyses of the intermediate complex during B–Z transition

Ae-Ree Lee1,†, Chin-Ju Park2,†, Hae-Kap Cheong3, Kyoung-Seok Ryu3, Jin-Wan Park1,3, Mun-Young Kwon1, Janghyun Lee3, Kyeong Kyu Kim3, Byong-Seok Choi4, and Joon-Hwa Lee1,*

1Department of Chemistry and RINS, Gyeongsang National University, Gyeongnam 52828, 2Division of Liberal Arts and Sciences and Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, 3Division of Magnetic Resonance, KBSI, Chungbuk 28119, 4Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, 5Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Gyeonggi 16419, Republic of Korea

Supplementary Information

Details of Derivation of Equations 2
Supplementary Figure S1 4
Supplementary Figure S2 5
Supplementary Figure S3 6
Supplementary Figure S4 7
Supplementary Figure S5 8
Supplementary Figure S6 9
Details of Derivation of Equations.

The possible pathways of B–Z transition of the 6-bp DNA duplex induced by Z-DNA binding proteins are given by:

\[
\begin{align*}
B & \leftrightarrow P \rightarrow BP \leftrightarrow P \rightarrow BP_2 \\
\uparrow & \quad \uparrow \\
Z & \leftrightarrow P \rightarrow ZP \leftrightarrow P \rightarrow ZP_2
\end{align*}
\]
(Scheme S1)

where \(P \) indicates the Z-DNA binding proteins and \(B \) and \(Z \) indicate the B-form and Z-form of 6-bp DNA duplexes, respectively. Based on the active B–Z transition mechanism reported previously, the B–Z transition pathway could be simply given by:

\[
B \leftrightarrow P \rightarrow BP \leftrightarrow P \rightarrow ZP_2
\]
(Scheme S2)

The total amount of added proteins ([\(P \] \text{tot}) is the summation of the concentrations of the free protein (\(P \)) and protein complexes (\(BP \), \(ZP \), and \(ZP_2 \)):

\[
[P]_{\text{tot}} = [P] + [BP] + [ZP] + 2[ZP_2]
\]
(S1)

The dissociation constants for the \(BP \) and \(ZP_2 \) complexes are given by:

\[
K_{d,BP} = \frac{[B][P]}{[BP]} \quad (S2)
\]

\[
K_{d,ZP_2} = \frac{[ZP][P]}{[ZP_2]} \quad (S3)
\]

The equilibrium constant between the \(BP \) and \(ZP \) complexes is given by:

\[
K_{BZ,1} = \frac{[ZP]}{[BP]} \quad (S4)
\]

The total concentration of DNA duplexes is given by:

\[
[N]_{\text{tot}} = [B] + [BP] + [ZP] + [ZP_2] \quad (S5)
\]

Eq. S2 – S4 and S5 give rise to:

\[
[N]_{\text{tot}} = [B] + \frac{[B][P]}{K_{d,BP}} + \frac{K_{BZ,1}[B][P]^2}{K_{d,BP}K_{d,ZP_2}} + \frac{K_{BZ,1}[B][P]^2}{K_{d,BP}K_{d,ZP_2}^2}
\]
(S6)

The relative populations of each complex state compared to \([N]_{\text{tot}} \) are given by:

\[
\frac{[B]}{[N]_{\text{tot}}} = \frac{K_{d,BP}K_{d,ZP_2}}{K_{d,BP}K_{d,ZP_2} + K_{d,ZP_2}[P] + K_{BZ,1}K_{d,ZP_2}[P] + K_{BZ,1}[P]^2}
\]
(S7)

\[
\frac{[BP]}{[N]_{\text{tot}}} = \frac{K_{d,ZP_2}[P]}{K_{d,BP}K_{d,ZP_2} + K_{d,ZP_2}[P] + K_{BZ,1}K_{d,ZP_2}[P] + K_{BZ,1}[P]^2}
\]
(S8)

\[
\frac{[ZP]}{[N]_{\text{tot}}} = \frac{K_{BZ,1}K_{d,ZP_2}[P]}{K_{d,BP}K_{d,ZP_2} + K_{d,ZP_2}[P] + K_{BZ,1}K_{d,ZP_2}[P] + K_{BZ,1}[P]^2}
\]
(S9)
\[
\frac{\{ZP_3\}}{\{N\}_{tot}} = \frac{K_{BZ,1}\{P\}^2}{K_{d,BP}K_{d,ZP2} + K_{d,ZP2}\{P\} + K_{BZ,1}K_{d,ZP2}\{P\} + K_{BZ,1}\{P\}^2}
\] (S10)

Eq. S7 – S10 and S1 give rise to:

\[
\{P\}_{tot} = \{P\} + \{N\}_{tot} \frac{K_{d,ZP2}\{P\} + K_{BZ,1}K_{d,ZP2}\{P\} + 2K_{BZ,1}\{P\}^2}{K_{d,BP}K_{d,ZP2} + K_{d,ZP2}\{P\} + K_{BZ,1}K_{d,ZP2}\{P\} + K_{BZ,1}\{P\}^2}
\] (S11)

Eq. S11 becomes Eq. S12:

\[
K_{BZ,1}\{P\}^3 + \{P\}^2 \{K_{BZ,1}(2\{N\}_{tot} - \{P\}_{tot}) + (1 + K_{BZ,1})K_{d,ZP2}\} + \{P\}(1 + K_{BZ,1})K_{d,ZP2}\{N\}_{tot} - \{P\}_{tot} + K_{d,BP}K_{d,ZP2} - K_{d,BP}K_{d,ZP2}\{P\}_{tot} = 0
\] (S12)

Eq. S12 is simply expressed by:

\[
\{P\}^3 + a\{P\}^2 + b\{P\} + c = 0
\] (S13)

where

\[
a = 2\{N\}_{tot} - \{P\}_{tot} + \left(1 + \frac{1}{K_{BZ,1}}\right)K_{d,ZP2},
\]

\[
b = \left(1 + \frac{1}{K_{BZ,1}}\right)K_{d,ZP2}(\{N\}_{tot} - \{P\}_{tot}) + \frac{K_{d,BP}K_{d,ZP2}}{K_{BZ,1}},
\]

\[
c = -\frac{K_{d,BP}K_{d,ZP2}\{P\}_{tot}}{K_{BZ,1}}
\]

Thus the closed-form solution of Eq. S13 has been reported as:\footnote{31}

\[
\{P\} = \frac{a}{3} + \frac{2}{3} \sqrt{a^2 - 3b \cos \theta}
\] (S14)

where

\[
\theta = \arccos \frac{-2a^3 + 9ab - 27c}{2\sqrt{(a^2 - 3b)^3}}
\]
Supplementary Fig. S1. (A) Superimposition of 1H/15N-HSQC spectra of free caZ$_{\alpha PKZ}$ (blue) and caZ$_{\alpha PKZ}$–dT(CG)$_3$ complex ($[N]_{tot}/[P]_{tot} = 0.6$, red) in NMR buffer (pH = 6.0) containing 10 mM NaCl at 35 °C. (B) The weighted average of 1H and 15N chemical shift changes ($\Delta\delta_{avg}$) of caZ$_{\alpha PKZ}$ upon binding to dT(CG)$_3$ at 10 (upper), 100 (middle), or 250 mM NaCl (lower). Residues whose cross-peaks disappear during titration are represented with green square symbols. The color used to illustrate the $\Delta\delta_{avg}$ is: red or blue, > 0.18 ppm; orange or cyan, 0.12 – 0.18 ppm; and yellow or pale green, 0.08 – 0.12 ppm.
Supplementary Fig. S2. The change in 1H/15N-HSQC spectra of caZ$_{α}$PKZ by addition of dT(CG)$_3$ in NMR buffer (pH = 6.0) containing (A) 10 or (B) 100 mM NaCl at 35 °C. The cross-peak color changes gradually from blue (free) to red (bound) according to the [N]$_{tot}$/[P]$_{tot}$ ratio.
Supplementary Fig. S3. (A,B) The 15N (left) and 1H (right) chemical shift differences between the free and bound form for B-DNA (red) and Z-DNA binding (blue) of caZαPKZ to dT(CG)$_3$ at (A) 10 and (B) 100 mM NaCl at 35 °C. (C) The 15N (left) and 1H (right) chemical shift differences between [NaCl] of 10 and 100 mM for free caZαPKZ (yellow circle) and caZαPKZ bound to B-DNA (magenta circle) and Z-DNA (cyan circle) at 35 °C.
Supplementary Fig. S4. Superimposition of 1H/15N-HSQC spectra of free caZ$_{\alpha PKZ}$ in NMR buffer (pH 6.0) containing 10 (red), 100 (blue), or 250 mM NaCl (green) at 25 °C.
Supplementary Fig. S5. (A,B) The concentrations of the total caZαPKZ ([P]_{tot}), total dT(CG)₃ ([N]_{tot}), free caZαPKZ ([P]), free B-DNA dT(CG)₃ ([B]), and each states of the caZαPKZ–dT(CG)₃ complex ([BP], [ZP], and [ZP₂]) as a function of the [N]_{tot}/[P]_{tot} ratio at (A) 10 or (B) 100 mM NaCl.
Supplementary Fig. S6. (A) Global fitting of the 1H/15N-HSQC titration curves for caZ$_{\alpha}$PKZ with dT(CG)$_3$ as a function of $[N]_{tot}/[P]_{tot}$ ratio at pH 8.0. Data for the global fitting derived from 1H (left) and 15N (right) chemical shift changes of HSQC cross peaks of caZ$_{\alpha}$PKZ at 10 (upper) or 100 mM NaCl (lower). (B) Global fitting of the 1H/15N-HSQC titration curves for caZ$_{\alpha}$PKZ with d(CG)$_3$ as a function of $[N]_{tot}/[P]_{tot}$ ratio at pH 8.0. Data for the global fitting derived from 1H (left) and 15N (right) chemical shift changes of HSQC cross peaks of caZ$_{\alpha}$PKZ at 10 mM NaCl.